

## ORIGINAL PAPER

## ΕΠΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ

# ***In-silico prediction of VP2-specific B- and T-cell epitopes as potential vaccine targets against the globally distributed human bocavirus 1***

**OBJECTIVE** We aimed at predicting B- and T-cell epitopes in the capsid protein VP2 which has been identified as a potential vaccine candidate against human bocavirus 1 (HBoV1). **METHOD** The VP2 sequence in FASTA format was obtained via the UniProt resource and the Phyre2 Protein Fold Recognition Server was used for 3D modeling. VP2 antigenicity was calculated by Vaxijen version 2.0. B-cell epitopes were predicted with the IEDB ElliPro tool. MHC class I and II epitopes were identified with the Vaxitop method of Vaxign. The MHC I epitopes were tested with IEDB's immunogenicity tool and MHC II binders with the IFNepitope server. Antigens' risk of allergenicity, toxicity, and autoimmunity triggering were tested via the AllerTOP version 2.0, Toxin Pred, and Peptide Match tools, respectively. Physicochemical properties were determined via Expasy ProtParam. **RESULTS** Immunoinformatic analysis resulted in the identification of VP2-specific B- and T-cell epitopes fulfilling prerequisites for vaccine design. **CONCLUSIONS** Our findings confirm the antigenicity of VP2 and indicate candidate B- and T-cell linear sequences suitable for in vitro validation.

ARCHIVES OF HELLENIC MEDICINE 2026, 43(2):258–262  
ΑΡΧΕΙΑ ΕΛΛΗΝΙΚΗΣ ΙΑΤΡΙΚΗΣ 2026, 43(2):258–262

K. Goupou,<sup>1</sup>  
C. Hatzoglou,<sup>1</sup>  
K.I. Gourgoulianis,<sup>2</sup>  
S.G. Zarogiannis,<sup>1</sup>  
E. Rouka<sup>3</sup>

<sup>1</sup>Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa

<sup>2</sup>Department of Respiratory Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa

<sup>3</sup>Department of Nursing, School of Health Sciences, University of Thessaly, Gaiopolis, Larissa, Greece

*In-silico* πρόβλεψη των ειδικών για τη VP2 B- και T-κυτταρικών επιτόπων ως δυνητικών στόχων εμβολίου κατά του παγκοσμίως διαδεδομένου ανθρώπινου μποκαϊού 1

Περίληψη στο τέλος του άρθρου

### Key words

Epitopes  
Human bocavirus 1  
Immunoinformatics  
Respiratory infection  
VP2

Submitted 18.3.2025

Accepted 17.4.2025

Human bocavirus 1 (HBoV1) was identified as a new species of the genus *Bocaparvovirus* (subfamily *Parvovirinae*, family *Parvoviridae*) in 2005.<sup>1</sup> The virus has emerged in human populations, with an increasing number of cases reported worldwide.<sup>2</sup> HBoV1 is responsible for mild to life-threatening respiratory infections, mainly in children under the age of five years,<sup>2,3</sup> yet in recent years there have been increasing reports of fatal cases in adults.<sup>4–6</sup>

The linear single-stranded DNA genome of HBoV1 encodes the non-structural NS1-4 proteins and the structural capsid proteins VP1-3.<sup>3</sup> Research evidence has highlighted

the importance of elucidating the role of the Bocavirus capsid proteins in developing effective antiviral therapies and vaccines that are currently unavailable.<sup>3</sup>

In mice, VP2 virus-like particles (VLPs) were shown to have good immunogenicity with induction of strong humoral and cellular immune responses, thus representing good candidate proteins for HBoV vaccine.<sup>7</sup> In a 2018 study Kalyanaraman<sup>8</sup> investigated potential vaccine candidates on the VP2 protein of HBoV1 using *in-silico* prediction tools. In this study, we focused on the same protein to identify novel epitopes fulfilling prerequisites for vaccine design.

## MATERIAL AND METHOD

### VP2 sequence retrieval

The VP2 sequence was downloaded in FASTA format from the Universal Protein Resource database UniProt (entry H9C5X6). UniProt provides quality protein sequence data that has been annotated to the highest possible standard.<sup>9</sup> The protein structure prediction server Phyre2 was used to build the VP2 three-dimensional (3D) model.<sup>10</sup>

### VP2 antigenicity prediction

VP2 antigenicity was identified by using the VaxiJen version 2.0 server which employs an alignment-free approach for antigen prediction based on the physicochemical properties of proteins.<sup>11</sup> This investigation resulted in the identification of H9C5X6 as a probable antigen with a prediction probability equal to 0.4821 (the predefined threshold for the virus model was 0.4).

### B- and T-cell epitopes prediction

Linear and discontinuous B-cell epitopes were retrieved by querying the ElliPro tool of the Immune Epitope Database Analysis Resource (IEDB),<sup>12</sup> which predicts antibody epitopes based on a protein antigen's 3D structure. The Vaxitop module of the Vaxign system<sup>13</sup> was used to predict the epitope binding to MHC class I and MHC class II alleles. Vaxitop is a very specific and sensitive method for epitope prediction, which is based on the principle of reverse vaccinology.

Subsequently, predicted MHC I binding peptides were tested for the ability to induce immunogenicity with the class I immunogenicity tool of IEDB.<sup>12</sup> Predicted MHC II epitopes were further tested for their potency to induce IFN-gamma (IFN- $\gamma$ ) release from CD4+ T cells using the predict module of the IFNepitope server and the hybrid approach algorithm (motif- and support vector machine-based models).<sup>14</sup> The antigenicity of the predicted B- and T-cell epitopes was re-examined via VaxiJen and the peptides identified as potential antigens were individually tested for the risk of allergenicity and toxicity, as well as the possibility of inducing autoimmunity via the AllerTOP version 2.0, Toxin Pred and Peptide Match tools, respectively.<sup>15-17</sup> Important physicochemical properties (estimated half-life and instability index) of the predicted sequences were also determined with the Expasy ProtParam tool.<sup>18</sup> Default parameters were used and where appropriate, homo sapiens was selected as the host species.

## RESULTS

### B-cell epitopes

The PDB file of the VP2 model was entered in the ElliPro tool which identified twelve linear and seven discontinuous B-cell epitopes. Out of the twelve predicted linear peptides,

only four were found to fulfill the requirements for vaccine design and each one was characterized as probable (a) antigen (antigenicity score >0.4), (b) non-allergen, and (c) non-toxic. Also, no match for these peptides was identified in the peptide search database and all were classified as stable based on the calculated instability index.

**YIPPGLMFNPKVPTRRVQYIRQNGSTAASTGRIQPYSK-PTSWM:** The antigenicity score was 0.5978 and the ElliPro score was 0.839. The estimated half-life was 2.8 hours in mammalian reticulocytes (*in vitro*), ten minutes in yeast (*in vivo*), and two minutes in *Escherichia coli* (*in vivo*). The instability index was 34.22 (stable).

**YNLQIKQILSNGADTTYNNDLTAG:** The antigenicity score was 0.6581 and the ElliPro score was 0.753. The estimated half-life was 2.8 hours in mammalian reticulocytes (*in vitro*), ten minutes in yeast (*in vivo*), and two minutes in *Escherichia coli* (*in vivo*). The instability index was 17.92 (stable).

**GVGISTGGWVGGSFSDKY:** The antigenicity score was 0.6141 and the ElliPro score was 0.700. The estimated half-life was 30 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was -3.31 (stable).

**CTNPEGTHINTGAAGFG:** The antigenicity score was 0.7372 and the ElliPro score was 0.698. The estimated half-life was 1.2 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 34.15 (stable).

### MHC I and MHC II epitopes

The VaxiTop method identified 53 and 37 unique MHC I and MHC II alleles, respectively. Based on specific criteria (>0.2 immunogenicity score for MHC I binding epitopes; >0.4 antigenicity score for B-cell linear peptides and MHC class I binders; >0.8 antigenicity score for MHC class II binders) 17 T-cell epitopes were found. However, the subsequent computation of physicochemical parameters indicated that ten of the predicted sequences were stable.

### MHC class I binding epitopes

**QVSCEIVWEV:** The antigenicity score was 0.7710 and the immunogenicity score was 0.40345. The estimated half-life was 0.8 hours in mammalian reticulocytes (*in vitro*), ten minutes in yeast (*in vivo*), and ten hours in *Escherichia coli* (*in vivo*). The instability index was 44.83 (unstable).

**MPFFLLENS:** The antigenicity score was 0.5877 and the

immunogenicity score was 0.21528. The estimated half-life was 30 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 79.11 (unstable).

**RCVTPWYT**: The antigenicity score was 0.5300 and the immunogenicity score was 0.28944. The estimated half-life was one hour in mammalian reticulocytes (*in vitro*), two minutes in yeast (*in vivo*), and two minutes in *Escherichia coli* (*in vivo*). The instability index was -28.82 (stable).

**DLTAGVHIF**: The antigenicity score was 0.6212 and the immunogenicity score was 0.22889. The estimated half-life was 1.1 hours in mammalian reticulocytes (*in vitro*), three minutes in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 57.71 (unstable).

**VSCEIVWEV**: The antigenicity score was 0.6121 and the immunogenicity score was 0.49715. The estimated half-life was 100 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 57.08 (unstable).

**IPIENELADL**: The antigenicity score was 0.9721 and the immunogenicity score was 0.27069. The estimated half-life was 20 hours in mammalian reticulocytes (*in vitro*), 30 minutes in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 41.57 (unstable).

**ESTEFTFNF**: The antigenicity score was 1.5252 and the immunogenicity score was 0.35891. The estimated half-life was 1 hour in mammalian reticulocytes (*in vitro*), 30 minutes in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 48.70 (unstable).

**VTTPWTYFNF**: The antigenicity score was 1.1013 and the immunogenicity score was 0.34648. The estimated half-life was 100 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was -32.43 (stable).

**VTTPWTYFN**: The antigenicity score was 0.4220 and the immunogenicity score was 0.31896. The estimated half-life was 100 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was -20.44 (stable).

**CEWVNNEA**: The antigenicity score was 0.7831 and the immunogenicity score was 0.21579. The estimated

half-life was 1.2 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was -17.24 (stable).

**CEWVNNERAY**: The antigenicity score was 0.5981 and the immunogenicity score was 0.26163. The estimated half-life was 1.2 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was -14.52 (stable).

**TPWTYFNFN**: The antigenicity score was 1.2462 and the immunogenicity score was 0.42663. The estimated half-life was 7.2 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was -23.94 (stable).

## MHC class II binding epitopes

**PGPLLQAQR**: The antigenicity score was 1.1470 and there was a positive IFN- $\gamma$  induction. The estimated half-life was 30 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 8.89 (stable).

**TGAYIQPTS**: The antigenicity score was 0.9760 and there was a positive IFN- $\gamma$  induction. The estimated half-life was 7.2 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 11.42 (stable).

**RAYIPPGGL**: The antigenicity score was 1.2301 and there was a positive IFN- $\gamma$  induction. The estimated half-life was one hour in mammalian reticulocytes (*in vitro*), 30 minutes in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 27.09 (stable).

**NFDCEWVNN**: The antigenicity score was 1.6979 and there was a positive IFN- $\gamma$  induction. Its estimated half-life was 1.4 hours in mammalian reticulocytes (*in vitro*), three minutes in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was -20.23 (stable).

**TALGMSLGG**: The antigenicity score was 0.9480 and there was a positive IFN- $\gamma$  induction. The estimated half-life was 7.2 hours in mammalian reticulocytes (*in vitro*), greater than 20 hours in yeast (*in vivo*), and greater than ten hours in *Escherichia coli* (*in vivo*). The instability index was 71.42 (unstable).

## DISCUSSION

Viral respiratory disease is a leading cause of morbidity and mortality globally.<sup>19</sup> HBoV1 has been identified as one of the most detected respiratory viruses in young children with respiratory tract infections<sup>2</sup> and research evidence suggests that it can function as a co-infectious agent, but also in isolation as a respiratory pathogen causing serious mono-infections both in young children and adults.<sup>20</sup> Expanding on previous research on the immunogenic capsid protein VP2<sup>7,8</sup> in this study, we applied an *in-silico* immunology approach to identify novel epitopes for peptide vaccine design against HBoV1.

Our results suggest that the predicted B- and T-cell linear sequences are antigenic, immunogenic, non-allergen, non-toxic, and impotent in triggering an autoimmune response. Regarding physicochemical features, the GV-GISTGGWVGGSHFSDKY B-cell epitope, as well as the VTTP-WTYFNF, VTTPWTYFN, and GPGLLSAQR T-cell peptides, were classified as stable also presenting a long half-life in three experimental models (mammalian reticulocytes *in vitro*, yeast *in vivo*, and *Escherichia coli* *in vivo*). These parameters are important for vaccine development as

stable proteins in test tubes,<sup>18</sup> are less prone to losing their structural integrity and activity while prolonged *in vivo* half-life is indispensable when expressing constructs in vectors.

Interestingly, the CTNPEGTHINTGAAGFG, VTTPWTYFNF, VTTPWTYFN, CEVVNNERA, CEVVNNERAY, TTPWTYFNFN, TGAYIQPTS, and NFDCEWVNN residues identified as stable having an estimated half-life >10 hours in *Escherichia coli* *in vivo*, are also present in peptides that have been previously predicted by the study of Kalyanaraman.<sup>8</sup>

Reverse vaccinology, the *in-silico* screening for the most probable protective antigens in sequenced pathogens, is the first step toward vaccine development.<sup>11</sup> Since there is a lack of available HBoV1 vaccines, we have employed this method to identify B- and T-cell epitopes as potential vaccine targets against the virulent strain HBoV1. Our results confirm the antigenicity of VP2 and point to specific B- and T-cell linear sequences that fulfill prerequisites for vaccine design, thus being suitable for *in vitro* validation.

In conclusion, our findings lay the basis for the evidence-directed experimental investigation of specific B- and T-cell linear sequences for peptide vaccine design against HBoV1.

## ΠΕΡΙΛΗΨΗ

***In-silico* πρόβλεψη των ειδικών για τη VP2 B- και T-κυτταρικών επιτόπων ως δυνητικών στόχων εμβολίου κατά του παγκοσμίως διαδεδομένου ανθρώπινου μποκαϊού 1**

Κ. ΓΟΥΠΟΥ,<sup>1</sup> Χ. ΧΑΤΖΟΓΛΟΥ,<sup>1</sup> Κ.Ι. ΓΟΥΡΓΟΥΛΙΑΝΗΣ,<sup>2</sup> Σ.Γ. ΖΑΡΟΓΙΑΝΝΗΣ,<sup>1</sup> Ε. ΡΟΥΚΑ<sup>3</sup>

<sup>1</sup>Τμήμα Φυσιολογίας, Ιατρική Σχολή, Σχολή Επιστημών Υγείας, Πανεπιστήμιο Θεσσαλίας, Βιόπολις, Λάρισα,

<sup>2</sup>Πνευμονολογική Κλινική, Σχολή Επιστημών Υγείας, Πανεπιστήμιο Θεσσαλίας, Βιόπολις, Λάρισα,

<sup>3</sup>Τμήμα Νοσηλευτικής, Σχολή Επιστημών Υγείας, Πανεπιστήμιο Θεσσαλίας, Γαιόπολις, Λάρισα

Αρχεία Ελληνικής Ιατρικής 2026, 43(2):258-262

**ΣΚΟΠΟΣ** Η πρόβλεψη επιτόπων B- και T-κυττάρων στην καψιδιακή πρωτεΐνη VP2, η οποία έχει ταυτοποιηθεί ως δυνητικός στόχος του εμβολιασμού κατά του HBoV1. **ΥΛΙΚΟ-ΜΕΘΟΔΟΣ** Η αλληλουχία της VP2 σε μορφή FASTA ελήφθη μέσω του UniProt και το Phyre2 χρησιμοποιήθηκε για την τρισδιάστατη μοντελοποίηση. Η αντιγονικότητα της VP2 υπολογίστηκε με το Vaxijen έκδοση 2.0. Οι επίτοποι των B-κυττάρων προβλέφθηκαν με το εργαλείο IE3D ElliPro. Οι επίτοποι MHC τάξης I και II προσδιορίστηκαν με τη μέθοδο Vaxitop του Vaxign. Οι επίτοποι MHC I ελέγχθηκαν με το εργαλείο ανοσογονικότητας του IE3D και οι προσδέτες MHC II με τον διακομιστή IFNeritope. Τα αντιγόνα ελέγχθηκαν ξεχωριστά για τον κίνδυνο πρόκλησης αλλεργίας και τοξικότητας, καθώς και για την πιθανότητα πρόκλησης αυτοανοσίας μέσω των εργαλείων AllerTOP έκδοση 2.0, Toxin Pred και Peptide Match, αντίστοιχα. Οι φυσικοχημικές ιδιότητες προσδιορίστηκαν μέσω του Expasy ProtParam. **ΑΠΟΤΕΛΕΣΜΑΤΑ** Η ανοσοπληροφορική ανάλυση οδήγησε στην ταυτοποίηση ειδικών για τη VP2 B- και T-κυτταρικών επιτόπων που πληρούν τις προϋποθέσεις για τον σχεδιασμό εμβολίου. **ΣΥΜΠΕΡΑΣΜΑΤΑ** Τα ευρήματά μας επιβεβαιώνουν την αντιγονικότητα της VP2 και υποδεικνύουν υποψήφιες γραμμικές αλληλουχίες B- και T-κυττάρων κατάλληλες για *in vitro* επικύρωση.

## References

- ALLANDER T, TAMMI MT, ERIKSSON M, BJERKNER A, TIVELJUNG-LINDELL A, ANDERSSON B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. *Proc Natl Acad Sci U S A* 2005, 102:12891–12896
- TRAPANI S, CAPORIZZI A, RICCI S, INDOLFI G. Human bocavirus in childhood: A true respiratory pathogen or a “passenger” virus? A comprehensive review. *Microorganisms* 2023, 11:1243
- MOHAMMADI M. HBoV-1: Virus structure, genomic features, life cycle, pathogenesis, epidemiology, diagnosis and clinical manifestations. *Front Cell Infect Microbiol* 2023, 13:1198127
- DIENINGHOFF D, KARAGIANNIDIS C, STRASSMANN S, PIEPER M, DAM-MASCHKE S, ZABNER J ET AL. Fatal HBoV-1 infection in adult female cystic fibrosis patient. *Hum Pathol (N Y)* 2017, 7:51–52
- CHOI SH, HUH JW, HONG SB, JUNG J, KIM MJ, CHONG YP ET AL. Severe human bocavirus-associated pneumonia in adults at a referral hospital, Seoul, South Korea. *Emerg Infect Dis* 2021, 27:226–228
- THAPA RR, PLENTZ A, EDINGER M, WOLFF D, ANGSTWURM K, SÖDER-LUND-VENERMO M. Human bocavirus 1 respiratory tract reactivations or reinfections in two adults, contributing to neurological deficits and death. *Access Microbiol* 2021, 3:000237
- DENG ZH, HAO YX, YAO LH, XIE ZP, GAO HC, XIE LY ET AL. Immunogenicity of recombinant human bocavirus-1,2 VP2 gene virus-like particles in mice. *Immunology* 2014, 142:58–66
- KALYANARAMAN N. *In silico* prediction of potential vaccine candidates on capsid protein of human bocavirus 1. *Mol Immunol* 2018, 93:193–205
- UNIPROT CONSORTIUM. UniProt: The Universal Protein Knowledgebase in 2023. *Nucleic Acids Res* 2023, 51:D523–D531
- KELLEY LA, MEZULIS S, YATES CM, WASS MN, STERNBERG MJ. The Phyre2 web portal for protein modeling, prediction and analysis. *Nat Protoc* 2015, 10:845–858
- DOYTCHINOVA IA, FLOWER DR. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. *BMC Bioinformatics* 2007, 8:4
- FLERI W, PAUL S, DHANDA SK, MAHAJAN S, XU X, PETERS B ET AL. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. *Front Immunol* 2017, 8:278
- HE Y, XIANG Z, MOBLEY HLT. Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. *J Biomed Biotechnol* 2010, 2010:297505
- DHANDA SK, VIR P, RAGHAVA GPS. Designing of interferon-gamma inducing MHC class-II binders. *Biol Direct* 2013, 8:30
- DIMITROV I, BANGOVI, FLOWER DR, DOYTCHINOVA I. AllerTOP v.2 – a server for *in silico* prediction of allergens. *J Mol Model* 2014, 20:2278
- GUPTA S, KAPOOR P, CHAUDHARY K, GAUTAM A, KUMAR R; OPEN SOURCE DRUG DISCOVERY CONSORTIUM ET AL. *In silico* approach for predicting toxicity of peptides and proteins. *PLoS One* 2013, 8:e73957
- CHEN C, LI Z, HUANG H, SUZEK BE, WU CH; UNIPROT CONSORTIUM. A fast Peptide Match service for UniProt Knowledgebase. *Bioinformatics* 2013, 29:2808–2809
- GASTEIGER E, HOOGLAND C, GATTIKER A, DUVAUD S, WILKINS MR, APPEL RD ET AL. Protein identification and analysis tools on the exPaSy server. In: Walker JM (ed) *The proteomics protocols handbook*. Humana Press, New York, 2005:571–607
- TROY NM, BOSCO A. Respiratory viral infections and host responses; insights from genomics. *Respir Res* 2016, 17:156
- BAGASI AA, HOWSON-WELLS HC, CLARK G, TARR AW, SOO S, IRVING WL ET AL. Human Bocavirus infection and respiratory tract disease identified in a UK patient cohort. *J Clin Virol* 2020, 129:104453

### Corresponding author:

E. Rouka, Department of Nursing, School of Health Sciences, University of Thessaly, Gaiopolis, 415 00 Larissa, Greece  
e-mail: errouka@uth.gr